Lecture 25 TM accepting a language

TM accepting a language

Definition

Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a TM, and $w \in \Sigma^*$.

T accepts *w* if $(s, \varepsilon, \Delta, w) \vdash_{T}^{*} (h, \varepsilon, \Delta, 1)$.

The language accepted by a TM T, denoted by L(T), is the set of strings accepted by T.

Example of language accepted by a TM

$$L(T) = \{0^n 10^n \mid n \ge 0\}$$

- T halts on $0^n 10^n$
- Thangs on $0^{n+1}10^n$ at p3
- T hangs on $O^n 1 O^{n+1}$ at q1
- T hangs on O^n I^2 O^n at q1

TM computing a function

Definition

Let $T=(Q, \Sigma, \Gamma, \delta, s)$ be a TM, and f be a function from Σ^* to Γ^* .

T computes f if, for any string w in Σ^* , $(s, \varepsilon, \Delta, w) \vdash_T^* (h, \varepsilon, \Delta, f(w))$.

Example of TM Computing Function

Example of TM Computing Function

Composite TM

- Let T1 and T2 be TM's.
- $T1 \rightarrow T2$ means executing T1 until T1 halts and then executing T2.
- $T1 \xrightarrow{a} T2$ means executing T1 until T1 halts and if the symbol under the tape head when T1 halts is a then executing T2.

Example of Composite TM

Nondeterministic TM

- An NTM starts working and stops working in the same way as a DTM.
- Each move of an NTM can be nondeterministic.

Each Move in an NTM

- reads the symbol under its tape head
- According to the *transition relation* on the symbol read from the tape and its current state, the TM choose one move nondeterministically to:
 - o write a symbol on the tape
 - o move its tape head to the left or right one cell or not
 - o changes its state to the *next state*

How to define nondeterministic TM (NTM)

- a quintuple $(Q, \Sigma, \Gamma, \delta, s)$, where
 - the set of states Q is finite, and does not contain halt state
 h,
 - o the input alphabet Σ is a finite set of symbols, not including the blank symbol Δ ,
 - o the tape alphabet Γ is a finite set of symbols containing Σ , but not including the blank symbol Δ ,
 - o the start state s is in Q, and
 - the transition $f^n \delta: Q \times (\Gamma \cup \{\Delta\}) \rightarrow 2^{Q \cup \{h\} \times (\Gamma \cup \{\Delta\}) \times \{L,R,S\}}$.

Configuration of an NTM

Definition

- Let $T = (Q, \Sigma, \Gamma, \delta, s)$ be an TM.
 - A configuration of T is an element of $Q \times \Gamma^* \times \Gamma \times \Gamma^*$
- Can be written as

(q, l, a, r) or string to the left of tape head

symbol under tape head

string to the right of tape head

Yield the next configuration

Definition

• Let $T = (Q, \Sigma, \Gamma, \delta, s)$ be an NTM, and $(q_1, \alpha_1 \underline{a_1} \beta_1)$ and $(q_2, \alpha_2 \underline{a_2} \beta_2)$ be two configurations of T.

We say $(q_1, \alpha_1 \underline{a_1} \beta_1)$ yields $(q_2, \alpha_2 \underline{a_2} \beta_2)$ in one step, denoted by $(q_1, \alpha_1 \underline{a_1} \beta_1) \vdash^T (q_2, \alpha_2 \underline{a_2} \beta_2)$, if

- \circ $(q_2,a_2,S) \in \delta(q_1, a_1), \alpha_1 = \alpha_2 \text{ and } \beta_1 = \beta_2,$
- \circ $(q_2,b,R) \in \delta(q_1, a_1), \alpha_2 = \alpha_1 b \text{ and } \beta_1 = a_2 \beta_2,$
- \circ $(q_2,b,L) \in \delta(q_1, a_1), \alpha_1 = \alpha_2 a_2 \text{ and } \beta_2 = b\beta_1.$

NTM accepting a language/computing a function

Definition

Let $T = (Q, \Sigma, \Gamma, \delta, s)$ be an NTM.

Let $w \in \Sigma^*$ and f be a function from Σ^* to Γ^* .

T accepts w if $(s, \varepsilon, \Delta, w) \vdash_{\mathsf{T}}^* (h, \varepsilon, \Delta, 1)$.

The language accepted by a TM T, denoted by L(T), is the set of strings accepted by T.

T computes *f* if, for any string w in Σ^* , $(s, \varepsilon, \Delta, w) \vdash_T^* (h, \varepsilon, \Delta, f(w))$.

Example of NTM

• Let $L = \{ ww | w \in \{0,1\}^* \}$

